1、实数包括有理数和无理数。
2、实数由一个五元组(R,+,0,×,1,≤)定义,其中,R是一个无限的集合;“+”和“×”是对R中元素的二元运算,“0”和“1”是R中特别重要的元素,“≤”是R中元素的二元关系。
3、多元组的元素必须满足一组公理,称作域公理。实数是域这种数学结构的一个典型例子。域作为一种基础结构,在数学王国被广泛使用。需要了解代数,才能了解域这种结构的基础。通常使用一个域公理集合来定义域。
1、实数包括有理数和无理数。
2、实数由一个五元组(R,+,0,×,1,≤)定义,其中,R是一个无限的集合;“+”和“×”是对R中元素的二元运算,“0”和“1”是R中特别重要的元素,“≤”是R中元素的二元关系。
3、多元组的元素必须满足一组公理,称作域公理。实数是域这种数学结构的一个典型例子。域作为一种基础结构,在数学王国被广泛使用。需要了解代数,才能了解域这种结构的基础。通常使用一个域公理集合来定义域。